Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2300836

ABSTRACT

The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1ß, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Neoplasms , Noncommunicable Diseases , Humans , Aged , Vitamin D/therapeutic use , Sirtuin 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Quality of Life , Pandemics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vitamins , Neoplasms/prevention & control , Lipids
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2200326

ABSTRACT

HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1ß, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , NF-kappa B/metabolism , Microglia/metabolism , Herpesvirus 1, Human/metabolism , Sirtuin 1/metabolism , Inflammation/metabolism , Cytokines/metabolism , Herpes Simplex/pathology
3.
Front Biosci (Landmark Ed) ; 27(9): 253, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2067594

ABSTRACT

SIRT1 was discovered in 1979 but growing interest in this protein occurred only 20 years later when its overexpression was reported to prolong the lifespan of yeast. Since then, several studies have shown the benefits of its increased expression in preventing or delaying of many diseases. SIRT1, as a histone deacetylase, is an epigenetic regulator but it has wide range of non-histone targets which are involved in metabolism, energy sensing pathways, circadian machinery and in inflammatory regulation. Disturbances in these interconnected processes cause different diseases, however it seems they have common roots in unbalanced inflammatory processes and lower level or inactivation of SIRT1. SIRT1 inactivation was implicated in coronavirus disease (COVID-19) severity as well and its low level counted as a predictor of uncontrolled COVID-19. Several other diseases such as metabolic disease, obesity, diabetes, Alzheimer's disease, cardiovascular disease or depression are related to chronic inflammation and similarly show decreased SIRT1 level. It has recently been known that SIRT1 is inducible by calorie restriction/proper diet, physical activity and appropriate emotional state. Indeed, a healthier metabolic state belongs to higher level of SIRT1 expression. These suggest that appropriate lifestyle as non-pharmacological treatment may be a beneficial tool in the prevention of inflammation or metabolic disturbance-related diseases as well as could be a part of the complementary therapy in medical practice to reach better therapeutic response and quality of life. We aimed in this review to link the beneficial effect of SIRT1 with those diseases, where its level decreased. Moreover, we aimed to collect evidences of interventions or treatments, which increase SIRT1 expression and thus, open the possibility to use them as preventive or complementary therapies in medical practice.


Subject(s)
Epigenesis, Genetic , Metabolic Diseases , Neoplasms , Sirtuin 1 , COVID-19 , Homeostasis , Humans , Inflammation , Metabolic Diseases/genetics , Metabolic Diseases/prevention & control , Neoplasms/genetics , Neoplasms/prevention & control , Quality of Life , Sirtuin 1/genetics , Sirtuin 1/metabolism
4.
Aging Cell ; 21(8): e13680, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992692

ABSTRACT

Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-ß1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-ß1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-ß1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-ß1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-ß1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-ß1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-ß1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-ß1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.


Subject(s)
Interleukin-11/metabolism , Pulmonary Fibrosis , Sirtuin 1/metabolism , Vitamin D Deficiency , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Animals , Fibrosis , Mice , Mitogen-Activated Protein Kinase Kinases/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Sirtuin 1/genetics , Transforming Growth Factor beta1/metabolism , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
5.
J Cell Mol Med ; 26(7): 1979-1993, 2022 04.
Article in English | MEDLINE | ID: covidwho-1774827

ABSTRACT

Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+ -dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS-induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1-dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up-regulated the activity of glycogen synthase kinase-3ß (GSK-3ß) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+ /SIRT1/GSK-3ß/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Glycogen Synthase Kinase 3 beta , NAD , NF-E2-Related Factor 2 , Sirtuin 1 , Acute Kidney Injury/metabolism , Endotoxins , Glycogen Synthase Kinase 3 beta/metabolism , Humans , NAD/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sirtuin 1/genetics , Sirtuin 1/metabolism
6.
Open Heart ; 9(1)2022 03.
Article in English | MEDLINE | ID: covidwho-1752901

ABSTRACT

Ferulic acid, a bacterial metabolite of anthocyanins, seems likely to be a primary mediator of the health benefits associated with anthocyanin-rich diets, and has long been employed in Chinese cardiovascular medicine. In rodent studies, it has exerted wide-ranging antioxidant and anti-inflammatory effects, the molecular basis of which remains rather obscure. However, recent studies indicate that physiologically relevant concentrations of ferulic acid can boost expression of Sirt1 at mRNA and protein levels in a range of tissues. Sirt1, a class III deacetylase, functions to detect a paucity of oxidisable substrate, and in response works in various ways to promote cellular survival and healthful longevity. Sirt1 promotes 'cell cleansing' and cell survival by boosting autophagy, mitophagy, mitochondrial biogenesis, phase 2 induction of antioxidant enzymes via Nrf2, and DNA repair-while inhibiting NF-kB-driven inflammation, apoptosis, and cellular senescence, and boosting endothelial expression of the protective transcription factor kruppel-like factor 2. A deficit of the latter appears to mediate the endothelial toxicity of the SARS-CoV-2 spike protein. Ferulic acid also enhances the activation of AMP-activated kinase (AMPK) by increasing expression and activity of its activating kinase LKB1-whereas AMPK in turn amplifies Sirt1 activity by promoting induction of nicotinamide phosphoribosyltranferase, rate-limiting for generation of Sirt1's obligate substrate NAD+. Curiously, AMPK acts by independent mechanisms to potentiate many of the effects mediated by Sirt1. Hence, it is proposed that ferulic acid may exert complementary or synergistic health-promoting effects when used in conjunction with clinically useful AMPK activators, such as the nutraceutical berberine. Additional nutraceuticals which might have potential for amplifying certain protective effects of ferulic acid/berberine are also discussed.


Subject(s)
Berberine , COVID-19 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Anthocyanins , Berberine/pharmacology , Coumaric Acids , Humans , Longevity , SARS-CoV-2 , Sirtuin 1/genetics , Sirtuin 1/metabolism , Spike Glycoprotein, Coronavirus
7.
J Immunol Res ; 2021: 4414544, 2021.
Article in English | MEDLINE | ID: covidwho-1443671

ABSTRACT

COVID-19 is a respiratory infection caused by the SARS-CoV-2 virus that can rapidly escalate to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Recently, extracellular high mobility group box 1 (HMGB1) has been identified as an essential component of cytokine storms that occur with COVID-19; HMGB1 levels correlate significantly with disease severity. Thus, the modulation of HMGB1 release may be vital for treating COVID-19. HMGB1 is a ubiquitous nuclear DNA-binding protein whose biological function depends on posttranslational modifications, its redox state, and its cellular localization. The acetylation of HMGB1 is a prerequisite for its translocation from the nucleus to the cytoplasm and then to the extracellular milieu. When released, HMGB1 acts as a proinflammatory cytokine that binds primarily to toll-like receptor 4 (TLR4) and RAGE, thereby stimulating immune cells, endothelial cells, and airway epithelial cells to produce cytokines, chemokines, and other inflammatory mediators. In this study, we demonstrate that inhaled [D-Ala2]-dynorphin 1-6 (leytragin), a peptide agonist of δ-opioid receptors, significantly inhibits HMGB1 secretion in mice with lipopolysaccharide- (LPS-) induced acute lung injury. The mechanism of action involves preventing HMGB1's hyperacetylation at critical lysine residues within nuclear localization sites, as well as promoting the expression of sirtuin 1 (SIRT1), an enzyme known to deacetylate HMGB1. Leytragin's effects are mediated by opioid receptors, since naloxone, an antagonist of opioid receptors, abrogates the leytragin effect on SIRT1 expression. Overall, our results identify leytragin as a promising therapeutic agent for the treatment of pulmonary inflammation associated with HMGB1 release. In a broader context, we demonstrate that the opioidergic system in the lungs may represent a promising target for the treatment of inflammatory lung diseases.


Subject(s)
Acute Lung Injury/drug therapy , Dynorphins/pharmacology , HMGB1 Protein/metabolism , Acetylation , Acute Lung Injury/metabolism , Animals , COVID-19/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Receptors, Opioid/metabolism , Sirtuin 1/metabolism , COVID-19 Drug Treatment
8.
Curr Neurovasc Res ; 17(5): 765-783, 2020.
Article in English | MEDLINE | ID: covidwho-922756

ABSTRACT

Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.


Subject(s)
Circadian Clocks/genetics , Metabolic Diseases/genetics , Niacinamide/genetics , Sirtuin 1/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Humans , Metabolic Diseases/diagnosis , Metabolic Diseases/metabolism , Niacinamide/metabolism , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism
9.
Mol Cell Endocrinol ; 515: 110917, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-661768

ABSTRACT

Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.


Subject(s)
Adipocytes/drug effects , Fibronectins/pharmacology , Gene Expression Regulation/drug effects , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Coronavirus Infections/virology , Fibronectins/genetics , Fibronectins/metabolism , Furin/genetics , Furin/metabolism , Gene Ontology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Molecular Sequence Annotation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2 , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , rab1 GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL